基于 PbSe 量子点的全光纤光功率密度和温度传感器

严金华**,徐帅锋*,沈旭辉,李泽林

浙江工业大学光电子智能化技术研究所,浙江杭州 310023

摘要 光功率密度和温度监测在工业生产和日常生活中具有重要意义,依据 PbSe 量子点具有较高热光系数的特性,设计了一种 PbSe 量子点作传感材料的全光纤马赫-曾德尔型传感器,并在不同光功率密度和不同温度条件下 对该传感器进行测试。实验结果表明:对波长为 473 nm 的光源光功率密度和不同温度条件下 1.455 nm・(mW⁻¹・mm²),温度灵敏度达到 0.67 nm・℃⁻¹。不仅实现了高灵敏度温度传感器,而且也为 PbSe 量子点制作热光型光器件打下了基础。

关键词 光纤光学; 传感器; PbSe 量子点; 马赫-曾德尔干涉; 热光系数 **中图分类号** TP212.14 **文献标识码** A

doi: 10.3788/LOP55.100602

All Fiber-Optic Sensor Measuring Optical Power Density and Temperature Based on PbSe Quantum Dots

Yan Jinhua**, Xu Shuaifeng*, Shen Xuhui, Li Zelin

Institute of Intelligent Optoelectronics Technology, Zhejiang University of Technology,

Hangzhou, Zhejiang 310023, China

Abstract Optical power density monitoring and temperature monitoring play an important role in the industrial production and day-to-day life. In this study, an all fiber-optic Mach-Zehnder sensor with PbSe quantum dots as the sensing material is fabricated on the basis of thermo-optical characteristic of PbSe quantum dots, and the sensor is tested under different optical power densities and temperatures. The results show that the power density sensitivity of the sensor to a light with a wavelength of 473 nm is 1.455 nm \cdot (mW⁻¹ \cdot mm²) and the temperature sensitivity is 0.67 nm \cdot °C⁻¹. This study not only realizes a high-sensitivity temperature sensor, but also lays the foundation for the thermal-optical devices made by PbSe quantum dots.

Key words fiber optics; sensors; quantum dots; Mach-Zehnder interferometer; thermo-optic coefficient OCIS codes 060.2370; 280.6780; 280.4788

1 引 言

量子点(QDs)是一种准零维的纳米半导体材 料,其空穴和电子的运动在空间中受到限制,电子能 级发生量子化,在物理特性上表现为量子限域效应、 量子尺寸效应、表面效应以及量子隧穿效应等。近 年来,量子点的研究硕果累累,例如在半导体放 大^[1]、生物传感^[2]、金属离子监测以及太阳能电池^[3] 等方面有着广泛的应用。本课题组研究表明:PbSe 量子点具有较高的热光系数^[4],材料的热光效应是 指材料的折射率随着温度的改变而变化的性质,热 光材料通常具有较高的热光系数,在实验研究中通 过激光热效应的现象验证了 PbSe 量子点具有热透 镜效应的结论;此外,采用 Z-scan 扫描的方法测量 PbSe 量子点材料非线性折射率系数,并通过公式计 算得到不同浓度 PbSe 量子点薄膜的非线性折射率 系数,通过计算发现 PbSe 量子点材料的热光系数 在 10⁻⁴量级,相比于其他材料其具有较大的热光系 数,这一特点为 PbSe 量子点在热光领域的应用打 开了广阔的空间。

由于 PbSe 量子点物理外形为粉末状,在与光 纤结合的应用中,通常将量子点与紫外(UV)固化

收稿日期: 2018-04-11;修回日期: 2018-05-07;录用日期: 2018-05-09

基金项目:浙江省自然科学基金(LY15F050011)

^{*} E-mail: xsf030@126.com; ** E-mail: jinhua@zjut.edu.cn

胶均匀混合后灌入空心光纤,再与普通单模光纤相 连接,这为搭建全光纤传感器提供了便利,可充分发 挥全光纤传感器的特点。

光纤传感器具有抗电磁干扰能力强、灵敏度高、 质量小等优点,全光纤马赫-曾德尔(M-Z)干涉仪在 微小位移测量^[5]、温度测量^[6-7]、折射率测量^[7-8]等方 面已有成熟的应用。本文将 PbSe 量子点作为传感 材料,依据 M-Z 干涉原理,搭建全光纤 M-Z 干涉 仪,并将灌有 PbSe 量子点的空心光纤作为传感臂 的传感单元,测试传感器对光功率密度和温度的响 应。该传感器结构简单,灵敏度高,成本较低。

2 基本原理

如图 1 所示,全光纤 M-Z 干涉仪是由两个光纤 耦合器连接而成,耦合器的两臂长分别为 L_1 和 L_2 , 其中, L_1 为探测臂, L_2 为参考臂。宽带光源(BBS) 发出的光经耦合器 1 分向干涉仪的两臂,经过不同 的路径之后,由耦合器 2 将输出的光叠加后产生干 涉效应,通过光谱仪(OSA)测试透射干涉光谱,透 射光谱的光强可表示为^[9]

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \Phi), \qquad (1)$$

式中: I_1 和 I_2 分别为通过光路 L_1 和 L_2 的光强;

 $\Delta \Phi$ 为 L_1 和 L_2 光路的相位差,表达式为^[5]

$$\Delta \Phi = \Delta \varphi + \Delta \delta = \frac{2\pi n_{\rm eff} \Delta L}{\lambda_k} + \frac{2\pi \Delta n_{\rm eff} l}{\lambda_k}, \quad (2)$$

其中 $\Delta \varphi$ 为 L_1 和 L_2 两光路的光纤长度差(系统固 有光程差) $\Delta L(\Delta L = L_1 - L_2)$ 引起的相位差; $\Delta \delta$ 为 胶体量子点有效折射率变化引起的相位差; n_{eff} 为光 纤有效折射率; Δn_{eff} 为胶体量子点材料的有效折射 率变化;l 为探测臂填充胶体量子点的长度; λ_k 为k级干涉条纹的最大中心波长,可表示为

Fig. 1 Schematic of the all fiber M-Z interference

对于本实验, $\Delta \varphi$ 是一定值,因此某一干涉最大 中心波长 λ_k 移动只与 $\Delta \delta$ 有关。由(2)式可知,材 料折射率的变化将引起干涉最大中心波长 λ_k 移动, λ_k 移动方向与相位差的变化有关。由于 PbSe 量子 点具有较高的热光系数,则折射率变化可表示为

$$\delta \Delta n_{\rm eff} = \frac{\mathrm{d}n}{\mathrm{d}T} \Delta T , \qquad (4)$$

则 λ_k 可表示为

$$\delta\lambda_{k} = \frac{(n_{\text{eff}}\Delta L + \Delta n_{\text{eff}}l)}{k} - \frac{[n_{\text{eff}}\Delta L + (\Delta n_{\text{eff}} + \delta\Delta n_{\text{eff}})l]]}{k} = \frac{\delta\Delta n_{\text{eff}}l}{k} \,. \tag{5}$$

两波峰间距离 $\Delta \lambda^{[10]}$,即自由光谱范围 R_{fs} ,(式 中忽略了量子点材料折射率变化对 R_{fs} 的影响):

$$\Delta \lambda_{k} = \lambda_{k+1} - \lambda_{k} \approx \frac{\lambda^{2}}{n_{\text{eff}} \Delta L} \,. \tag{6}$$

由于 PbSe 量子点具有较高的热光系数,达到 10^{-4} 量级,由(4)式可知当量子点材料温度变化时材 料折射率将会改变($\delta \Delta n_{eff} < 0$),从而可通过观察干 涉条纹的移动计算材料折射率的变化。

3 实验设计与数据分析

M-Z 干涉仪设计如图 1 所示,宽带光源(BBS) (浩源光电)通过通道 1 进入耦合比为 10:90 的耦 合器 1,由于探测光路 L₁ 中填充了胶体量子点,对 光路损耗较大,因此将分光比为 90%的光路设计为 探测光路;然后将两束光通过耦合器 2 耦合在一起, 并通 过 光 谱 仪 (AQ6317C,光 谱 范 围:600 ~ 1750 nm;灵敏度:0.01 nm)检测输出光强 *I*,得到了 稳定的干涉图。

本实验采用的 PbSe/UV 胶的质量浓度为 2 mg•mL⁻¹,其中探测光路 L₁ 中填充了 2.7 mm 的胶体 PbSe 量子点,如图 2 所示,并使用紫外灯进 行固化,将填充量子点的这段作为该传感器的传感 单元放入干涉仪的探测臂。

光功率密度实验的整体设计如图 3 所示,在室 温条件下,将传感器粘牢在塑料平板上,塑料平板固 定在稳定的光学平台上,波长为 473 nm 的半导体 激光器发出的激光经衰减器调节,通过扩束镜将光 斑放大,再通过反射镜将光斑照射在传感单元上,使 照射在 PbSe 量子点上的光斑比较均匀,实验时用 直尺测量出经扩束后的光斑大小并计算光斑面积。 用光功率计(Thorlabs,S121)来测量光功率,进而得 到光功率密度大小。实验时通过衰减片调节照射在 材料上的光功率,记录不同光功率密度条件下的干 涉条纹。

实验得到的干涉条纹移动情况如图 4 所示。

图 2 胶体量子点与单模光纤的连接

Fig. 2 Connection between the colloidal quantum dots and the single mode fiber

图 3 光功率密度传感实验光路设计原理图 Fig. 3 Schematic of the light path for the optical power density sensing test

图 4 干涉条纹随着 473 nm 光源光功率密度的增加向左移动 Fig. 4 Interference fringes move to the left with an increase in the optical power density of the 473 nm light source 在进行温度实验时将制作的M-Z传感器的探测臂

和参考臂都放到高精密温控炉中,这样可以排除光纤 材料热胀冷缩对实验结果的影响,测量温度从25.5 ℃ 上升至 34.5 ℃时的干涉条纹变化情况如图 5 所示。实 验结果表明在不同光功率密度和温度条件下,干涉条 纹中 k 级干涉最大中心波长 λ_k 向左线性移动。

由图 6 可知,随着光功率密度的增加,该传感器 干涉条纹向短波长处发生明显移动,且移动速度与光 功率密度增量成正比。由图 7 可知,随着温度的升 高,该传感器干涉条纹向短波长处发生明显移动,且 移动速度与温度增量成正比,该传感器对温度的灵敏 度约为0.67 nm・℃⁻¹,高于传统传感器,这表明该传 感器对温度具有较高的灵敏度,多次光功率密度传感 实验和温度传感实验均得出同样的实验结果。

图 5 干涉条纹随着温度增加向左移动。(a) 25.5~28.5 ℃;(b) 28.5~31.5 ℃;(c) 31.5~34.5 ℃ Fig. 5 Interference fringes move to the left with an increase in temperature. (a) 25.5-28.5 ℃; (b) 28.5-31.5 ℃; (c) 31.5-34.5 ℃

图 6 λ_k 的移动与 473 nm 波长光源功率密度的关系 Fig. 6 Relationship between the movement of λ_k and the power density of light with a wavelength of 473 nm

Fig. 7 Relationship between the movement of λ_k and the temperature

4 结 论

利用 PbSe 量子点材料做传感材料,制作了一个 M-Z 干涉仪。通过大量实验,该传感器在不同光功率 密度或温度条件下,干涉条纹的移动量均与光功率密 度增量或温度增量成正比。该传感器具有较高的温 度灵敏度,高达 0.67 nm • \mathbb{C}^{-1} ;对 473 nm 光源的光 功率密度灵敏度达1.455 nm • (mW⁻¹ • mm²),实验 结果表明,PbSe 量子点是制作温度传感等高热光器 件的理想材料。

参考文献

 Cheng C, Hu N. Broadband PbSe quantum-dotdoped fiber amplifiers from 1250 nm to 1370 nm[J]. Acta Optica Sinica, 2016, 36(4): 0406002. 程成, 胡能树. 1250~1370 nm 波带 PbSe 量子点宽 带光 纤 放 大 器 [J]. 光 学 学 报, 2016, 36 (4): 0406002.

- [2] Scheibner M, Schmidt T, Worschech L, et al. Superradiance of quantum dots[J]. Nature Physics, 2007, 3(2): 106-110.
- [3] Peng L. CdSe, PbS quantum dot materials and solar cell devices [D]. Wuhan: Huazhong University of Science & Technology, 2013.
 彭立. 硒化镉、硫化铅量子点材料及太阳能电池研究 [D]. 武汉:华中科技大学, 2013.
- [4] Yan J, Lyu J, Zhang H, et al. The thermo-optic characteristics of CdSe/ZnS quantum dot with Z-scan measurement method using a CW laser [J]. Proceedings of SPIE, 2015, 9673: 967311.
- [5] Shen C Y, Chu J L, Lu Y F, et al. High sensitive micro-displacement sensor based on M-Z interferometer by a bowknot type taper [J]. IEEE Photonics Technology Letters, 2014, 26(1): 62-65.
- [6] Guan X W, Wang X Y, Frandsen L H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer [J]. Optics Express, 2016, 24(15): 16349-16356.
- [7] Lu P, Men L Q, Sooley K, et al. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature[J]. Applied Physics Letters, 2009, 94(13): 131110.
- [8] Lu Y F, Shen C Y, Zhong C, et al. Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG [J]. IEEE Photonics Technology Letters, 2014, 26(11): 1124-1127.
- [9] Salceda-Delgado G, Monzon-Hernandez D, Martinez-Rios A, et al. Optical microfiber mode interferometer for temperature-independent refractometric sensing[J]. Optics Letters, 2012, 37 (11): 1974-1976.
- [10] Tian Z B, Yam S S H, Barnes J, et al. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers
 [J]. IEEE Photonics Technology Letters, 2008, 20 (8): 626-628.